metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tris(N,N'-dibutylthiourea-kS)iodidocopper(I) 0.6-hydrate

Islam Ullah Khan,^a Muhammad Mufakkar,^a Saeed Ahmad,^b* Hoong-Kun Fun^c* and Suchada Chantrapromma^d

^aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, ^bDepartment of Chemistry, University of Engineering and Technology, Lahore, Pakistan, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: saeed_a786@hotmail.com, hkfun@usm.my

Received 16 August 2007; accepted 12 September 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.009 Å; Hatom completeness 99%: disorder in solvent or counterion: R factor = 0.062: wR factor = 0.173; data-to-parameter ratio = 30.3.

In the title complex, $[CuI(C_9H_{20}N_2S)_3] \cdot 0.6H_2O$, the Cu^I and I atoms lie on a threefold rotation axis. The partially occupied water molecule is disordered across an inversion centre. Each Cu^{I} centre binds to the S atoms of three N,N'-dibutylthiourea ligands and I⁻ in a distorted tetrahedral environment. N- $H \cdots I$ and $C - H \cdots S$ interactions are observed in the complex molecule. Intermolecular N-H···S hydrogen bonds link the molecules into a two-dimensional network parallel to the ab plane.

Related literature

For related literature on values of bond lengths, see: Allen et al. (1987). For related structures, see: Bombicz et al. (2004); Lobana et al. (2006); Mufakkar et al. (2007). For related literature on the coordination chemistry of copper, see: Atkinson et al. (1985); Bombicz et al. (2004); Dubler & Bensch (1986); Eller et al. (1977); Girling & Amma (1971); Griffith et al. (1976); Hunt et al. (1979); Kaim & Schwederski (1994); Lobana et al. (2006); Stocker et al. (1996).

Experimental

Crystal data

[CuI(C9H20N2S)3].0.6(H2O) $M_r = 766.24$ Trigonal, $P\overline{3}$ a = 13.5514 (3) Å c = 11.4588 (6) Å $V = 1822.38(11) \text{ Å}^3$

Data collection

Bruker SMART APEXII CCD	21130 measured reflections
area-detector diffractometer	3632 independent reflections
Absorption correction: multi-scan	2454 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.090$
$T_{\rm min} = 0.507, T_{\rm max} = 0.851$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	120 parameters
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 2.54 \text{ e} \text{ Å}^{-3}$
3632 reflections	$\Delta \rho_{\rm min} = -1.13 \text{ e} \text{ Å}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $\mu = 1.65 \text{ mm}^-$

T = 100.0 (1) K

 $0.48 \times 0.27 \times 0.10 \text{ mm}$

Table 1

Selected geometric parameters (Å, °).

I1-Cu1	2.6251(10)	Cu1-S1	2.3543 (12)
$S1-Cu1-S1^{1}$	99.32 (4)	S1-Cu1-I1	118.34 (3)
Symmetry code: (i) – x	x + y + 1, $-x + 1$, z .		

Table 2

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots S1^{ii}$ $N2 - H2 \cdots I1$ $C2 - H2A \cdots S1$	0.86	2.57	3.347 (5)	151
	0.86	2.89	3.735 (4)	167
	0.97	2.65	3.114 (7)	110

Symmetry code: (ii) y, -x + y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Financial support from the University of Engineering and Technology Research Board and the Pakistan Council for Science and Technology, Islamabad, is gratefully acknowledged. The authors also thank Universiti Sains Malaysia for Fundamental Research Grant Scheme (FRGS) grant No. 203/ PFIZIK/671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2443).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Atkinson, E. R., Gardiener, D. J., Jackson, A. R. W. & Raper, E. S. (1985). *Inorg. Chim. Acta*, 98, 35–41.
- Bombicz, P., Mutikainen, I., Krunks, M., Leskela, T., Madarasz, J. & Niinisto, L. (2004). *Inorg. Chim. Acta*, 357, 513–525.
- Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Dubler, E. & Bensch, E. (1986). Inorg. Chim. Acta, 125, 37-42.
- Eller, P. G., Bradley, D. C., Hursthouse, M. B. & Meek, D. W. (1977). Coord. Chem. Rev. 24, 54–63.
- Girling, R. L. & Amma, E. L. (1971). Inorg. Chem. 10, 335-340.

- Griffith, H., Hunt, G. W. & Amma, E. L. (1976). J. Chem. Soc. Chem. Commun. p. 432.
- Hunt, G. W., Terry, N. W. & Amma, E. L. (1979). Acta Cryst. B35, 1235-1236.
- Kaim, W. & Schwederski, B. (1994). Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, p. 367. New York: John Wiley and Sons Inc.
- Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.
- Mufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2384.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stocker, F. B., Troester, M. A. & Britton, D. (1996). Inorg. Chem. 35, 3145-3153.

supplementary materials

Acta Cryst. (2007). E63, m2550-m2551 [doi:10.1107/S1600536807044649]

Tris(N,N'-dibutylthiourea-KS)iodidocopper(I) 0.6-hydrate

I. U. Khan, M. Mufakkar, S. Ahmad, H.-K. Fun and S. Chantrapromma

Comment

Crystal structures of several copper(I) complexes of thiourea and its derivatives have been reported (Eller *et al.*, 1977; Stocker *et al.*, 1996; Girling & Amma, 1971; Atkinson *et al.*, 1985; Dubler & Bensch, 1986). They show that a wide variety of stoichiometries and structural diversity exist for these complexes, with the copper to sulfur ratio ranging from 1:4 as in monomeric [Cu(tu)₄(SiF₆)_{0.5}] (Hunt *et al.*, 1979) to 1:1.5 as in tetrameric [Cu₄(tu)₆(NO₃)₄]·4H₂O (Griffith *et al.*, 1976). We are interested in understanding the correlation of the geometries of such complexes with the nature of substituents on thiourea and the strength and size of the other coordinating ligands. Previously, we have reported the crystal structure of tetrakis(*N*-methylthiourea- κS)copper(I) iodide (Mufakkar *et al.*, 2007). Now we report here the crystal structure of the title complex.

In the molecule of the title complex, atoms Cu1 and I1 lie on a threefold rotation axis and the asymmetric unit therefore contains one third of the complex molecule (Fig. 1). The asymmetric unit also contains a partially occupied water molecule, disordered across a inversion center. The coordination of Cu1 is a distorted tetrahedron, being coordinated by the S atoms of the three N,N-dibutylthiourea ligands, with S—Cu—S angles of 99.32 (4)° (Table 1). These angles are smaller than those observed in related structures (Bombicz *et al.*, 2004; Lobana *et al.*, 2006; Mufakkar *et al.*, 2007). However, the Cu—S bond distances [2.3543 (12) Å] of the title complex lie within the range of those found in the Cu^I complexes with tetrahedral geometry (Bombicz *et al.*, 2004; Lobana *et al.*, 2006; Mufakkar *et al.*, 2007). The fourth coordination of Cu^I is occupied by the I1 atom with a Cu1—I1 distance of 2.6251 (10) Å and S—Cu—I angle of 118.34 (3)°. The dihedral angle between the mean planes of S1/N1/N2/C1/C2/C6/C7 and C2/C3/C4/C5 is 80.2 (6)°. All other bond lengths and angles are in normal ranges (Allen *et al.*, 1987).

The I atom is involved in an intramolecular N—H···I hydrogen bond and the S atoms form weak C—H···S intramolecular interactions (Fig. 1). Intermolecular N—H···S hydrogen bonds stabilize the crystal structure (Table 2). In the crystal packing (Fig. 2), the molecules are arranged into a two-dimensional network parallel to the *ab* plane.

Experimental

To a solution of copper(I) iodide (0.19 g, 1.0 mmol) in acetonitrile (15 ml) was added 2 molar equivalents of N,N-dibutylthiourea in acetonitrile (10 ml). The mixture was stirred for half an hour. A clear solution was obtained. The solution was concentrated by slow evaporation at room temperature to yield colourless single crystals of the title compound suitable for *x*-ray stucture determination after several days.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å and C—H = 0.96 or 0.97 Å. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for

the remaining H atoms. A rotating group model was used for the methyl groups. The H atoms of the partially occupied disordered water molecule could not be located. The highest residual peak is located 1.03 Å from I1 and the deepest hole is located 0.80 Å from I1.

Figures

Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. For clarity, only N-bound H atoms and those involving in weak C—H···S interactions (dashed lines) are shown. Symmetry codes: (i) -x + y + 1, -x + 1, z; (ii) -y + 1, x-y, z.

Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

lodidotris(*N*,*N*'-dibutylthiourea-*κS*)copper(I) 0.6-hydrate

Crystal data	
$[Cu(C_9H_{20}N_2S)_3I] \cdot 0.6(H_2O)$	Z = 2
$M_r = 766.24$	$F_{000} = 800$
Trigonal, $P\overline{3}$	$D_{\rm x} = 1.396 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 3	Mo K α radiation $\lambda = 0.71073$ Å
a = 13.5514(3) Å	Cell parameters from 3632 reflections
b = 13.5514(3) Å	$\theta = 1.7 - 30.4^{\circ}$
c = 11.4588 (6) Å	$\mu = 1.65 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 100.0 (1) K
$\beta = 90^{\circ}$	Plate, colourless
$\gamma = 120^{\circ}$	$0.48 \times 0.27 \times 0.10 \text{ mm}$
$V = 1822.38 (11) \text{ Å}^3$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3632 independent reflections
Radiation source: fine-focus sealed tube	2454 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.090$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 30.4^{\circ}$

T = 100.0(1) K	$\theta_{\min} = 1.7^{\circ}$
ω scans	$h = -19 \rightarrow 18$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -18 \rightarrow 18$
$T_{\min} = 0.508, \ T_{\max} = 0.851$	$l = -15 \rightarrow 15$
21130 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0894P)^2 + 1.4942P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3632 reflections	$\Delta \rho_{max} = 2.54 \text{ e} \text{ Å}^{-3}$
120 parameters	$\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
I1	0.6667	0.3333	0.71844 (4)	0.02975 (18)	
Cu1	0.6667	0.3333	0.94753 (8)	0.0274 (2)	
S1	0.70138 (9)	0.50061 (9)	1.04506 (9)	0.0267 (3)	
N1	0.6251 (4)	0.6474 (3)	1.0253 (3)	0.0312 (9)	
H1	0.6035	0.6851	0.9824	0.037*	
N2	0.6362 (4)	0.5666 (3)	0.8559 (3)	0.0317 (9)	
H2	0.6547	0.5227	0.8197	0.038*	
C1	0.6508 (4)	0.5764 (4)	0.9706 (4)	0.0247 (9)	
C2	0.6302 (5)	0.6675 (5)	1.1508 (4)	0.0433 (13)	
H2A	0.6334	0.6061	1.1909	0.052*	
H2B	0.5608	0.6659	1.1751	0.052*	

supplementary materials

0.60

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0312 (2)	0.0312 (2)	0.0267 (3)	0.01562 (11)	0.000	0.000
Cul	0.0270 (3)	0.0270 (3)	0.0283 (5)	0.01350 (17)	0.000	0.000
S1	0.0267 (6)	0.0264 (6)	0.0275 (5)	0.0137 (5)	-0.0003 (4)	-0.0003 (4)
N1	0.041 (2)	0.033 (2)	0.0266 (19)	0.0237 (19)	-0.0042 (16)	-0.0031 (16)
N2	0.044 (2)	0.034 (2)	0.0259 (19)	0.026 (2)	0.0012 (17)	-0.0026 (16)
C1	0.020 (2)	0.024 (2)	0.028 (2)	0.0097 (17)	0.0004 (16)	0.0002 (17)
C2	0.060 (4)	0.044 (3)	0.035 (3)	0.032 (3)	-0.011 (2)	-0.010 (2)
C3	0.053 (4)	0.043 (3)	0.050 (3)	0.025 (3)	-0.004 (3)	0.003 (3)
C4	0.066 (4)	0.057 (4)	0.042 (3)	0.024 (3)	-0.006 (3)	-0.009 (3)
C5	0.085 (6)	0.075 (5)	0.049 (4)	0.024 (4)	-0.020 (4)	-0.022 (4)
C6	0.047 (3)	0.034 (3)	0.027 (2)	0.026 (2)	-0.001 (2)	0.0024 (19)
C7	0.073 (4)	0.051 (3)	0.035 (3)	0.042 (3)	-0.004 (3)	-0.004 (2)
C8	0.084 (5)	0.057 (4)	0.034 (3)	0.042 (4)	-0.016 (3)	-0.005 (3)
C9	0.095 (6)	0.067 (5)	0.058 (4)	0.047 (5)	-0.003 (4)	0.006 (3)
O1W	0.30 (3)	0.30 (3)	0.32 (13)	0.149 (15)	0.000	0.000

Geometric parameters (Å, °)

I1—Cu1	2.6251 (10)	C4—H4A	0.97
Cu1—S1	2.3543 (12)	C4—H4B	0.97

Cu1—S1 ⁱ	2.3543 (12)	C5—H5A	0.96
Cu1—S1 ⁱⁱ	2.3543 (12)	С5—Н5В	0.96
S1—C1	1.720 (4)	С5—Н5С	0.96
N1—C1	1.331 (5)	C6—C7	1.513 (7)
N1—C2	1.460 (6)	С6—Н6А	0.97
N1—H1	0.86	С6—Н6В	0.97
N2—C1	1.326 (6)	С7—С8	1.527 (8)
N2—C6	1.462 (6)	С7—Н7А	0.97
N2—H2	0.86	С7—Н7В	0.97
C2—C3	1.484 (8)	C8—C9	1.509 (9)
C2—H2A	0.97	C8—H8A	0.97
C2—H2B	0.97	C8—H8B	0.97
C3—C4	1.543 (8)	С9—Н9А	0.96
С3—НЗА	0.97	С9—Н9В	0.96
С3—Н3В	0.97	С9—Н9С	0.96
C4—C5	1.512 (9)		
S1—Cu1—S1 ⁱ	99.32 (4)	С3—С4—Н4В	109.2
S1—Cu1—S1 ⁱⁱ	99.32 (4)	H4A—C4—H4B	107.9
S1 ⁱ —Cu1—S1 ⁱⁱ	99.32 (4)	C4—C5—H5A	109.5
S1—Cu1—I1	118.34 (3)	С4—С5—Н5В	109.5
S1 ⁱ —Cu1—I1	118.34 (3)	H5A—C5—H5B	109.5
S1 ⁱⁱ —Cu1—I1	118.34 (3)	С4—С5—Н5С	109.5
C1—S1—Cu1	113.09 (15)	Н5А—С5—Н5С	109.5
C1—N1—C2	126.5 (4)	H5B—C5—H5C	109.5
C1—N1—H1	116.8	N2—C6—C7	112.2 (4)
C2—N1—H1	116.8	N2—C6—H6A	109.2
C1—N2—C6	124.4 (4)	С7—С6—Н6А	109.2
C1—N2—H2	117.8	N2—C6—H6B	109.2
C6—N2—H2	117.8	С7—С6—Н6В	109.2
N2—C1—N1	117.3 (4)	Н6А—С6—Н6В	107.9
N2—C1—S1	121.1 (3)	C6—C7—C8	111.6 (5)
N1—C1—S1	121.6 (3)	С6—С7—Н7А	109.3
N1—C2—C3	113.4 (5)	С8—С7—Н7А	109.3
N1—C2—H2A	108.9	С6—С7—Н7В	109.3
C3—C2—H2A	108.9	С8—С7—Н7В	109.3
N1—C2—H2B	108.9	H7A—C7—H7B	108.0
C3—C2—H2B	108.9	C9—C8—C7	114.1 (6)
H2A—C2—H2B	107.7	С9—С8—Н8А	108.7
C2—C3—C4	111.1 (5)	С7—С8—Н8А	108.7
С2—С3—НЗА	109.4	С9—С8—Н8В	108.7
С4—С3—Н3А	109.4	С7—С8—Н8В	108.7
С2—С3—Н3В	109.4	H8A—C8—H8B	107.6
С4—С3—Н3В	109.4	С8—С9—Н9А	109.5
НЗА—СЗ—НЗВ	108.0	С8—С9—Н9В	109.5
C5—C4—C3	112.2 (6)	Н9А—С9—Н9В	109.5
С5—С4—Н4А	109.2	С8—С9—Н9С	109.5
C3—C4—H4A	109.2	Н9А—С9—Н9С	109.5

supplementary materials

С5—С4—Н4В	109.2	Н9В—С9—Н9С	109.5
S1 ⁱ —Cu1—S1—C1	162.01 (17)	Cu1—S1—C1—N1	155.8 (3)
\$1 ⁱⁱ —Cu1—S1—C1	-96.85 (17)	C1—N1—C2—C3	104.8 (6)
I1—Cu1—S1—C1	32.58 (17)	N1—C2—C3—C4	170.6 (5)
C6—N2—C1—N1	-2.0 (7)	C2—C3—C4—C5	-175.9 (6)
C6—N2—C1—S1	178.3 (4)	C1—N2—C6—C7	-176.8 (5)
C2—N1—C1—N2	177.3 (5)	N2—C6—C7—C8	173.5 (5)
C2-N1-C1-S1	-3.0 (7)	C6—C7—C8—C9	59.6 (8)
Cu1—S1—C1—N2	-24.4 (4)		

Symmetry codes: (i) -*x*+*y*+1, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1···S1 ⁱⁱⁱ	0.86	2.57	3.347 (5)	151
N2—H2…I1	0.86	2.89	3.735 (4)	167
C2—H2A···S1	0.97	2.65	3.114 (7)	110
Symmetry codes: (iii) y , $-x+y+1$, $-z+2$.				

Fig. 1

